Kingsfield Primary School

A member of the Active Learning Trust

Statement / Policy Summary			
This is our school's calculation policy.	Equalities Impact Statement Has this policy fully considered the school's equality objectives and statement?	Yes	
Date ratified:	Is there any impact upon the school's equality objectives?	Is there any impact upon the school's equality objectives?	No
Date of review:	If 'yes', are these clearly described and their impact assessed?	If 'yes', are these clearly described and their impact assessed?	N/A

Introduction

This policy introduces key concepts using a concrete-pictorial-abstract approach.
The use of concrete resources and visuals underpins this calculation policy and underpins Mathematic lessons at Kingsfield Primary School.

The policy details:

- Addition
- Subtraction
- Multiplication
- Division

Each operation is broken down into skills for each year group and shows recommended models and visuals to support the teaching of the corresponding concepts alongside. Suggestions are also given for conceptual variation (Five Big Ideas of Mastery, NCETM).

Calculation Policy: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \overline{\bar{O}} \\ & \overline{0} \end{aligned}$		Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	 Use the part-partwhole diagram as shown above to move into the abstract.

		Count on using bead strings, cubes or Numicon: 붑 \square	Use a number line to count on in ones: Use a bar model which encourages the children to count on, rather than count all:	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2 ? $4+2$
		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

		$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw pictures to combine the	Combine the two numbers that make 10 and then add on the remainder. $\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$
$\stackrel{\oplus}{\succ}$		Continue to develop understanding of partitioning and place value.	Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.	$\begin{gathered} 41+8 \\ 1+8=9 \\ 40+9=49 \end{gathered}$ $\begin{array}{r} 41 \\ +49 \\ \hline 49 \end{array}$

		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$	Children can draw the counters to help them to solve additions.	$\begin{gathered} 24+15=39 \\ 24 \\ +15 \\ \hline 39 \end{gathered}$
		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Tens Ones 0	Look for ways to make 10: $\begin{gathered} 36+25= \\ 30+20=50 \\ 5+5=10 \\ 50+10+1=61 \end{gathered}$ Formal method: 36 $\frac{+25}{61} \frac{1}{1}$

0 0 0 $\stackrel{0}{0}$		Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places．

Conceptual variation；different ways to ask children to solve $21+34$			
	Word problems：In year 3， there are 21 children and in year 4，there are 34 children．How many children in total？ $21+34=55 \text {. Prove it }$	Calculate the sum of twenty－one and thirty－four．	門の + 閄 Missing digit problems：

Calculation Policy: Subtraction

$\stackrel{\circ}{4}$ $\stackrel{0}{0}$ $\stackrel{0}{\circ}$		Consolidate understanding using numbers with more than 4 digits and extend by subtracting numbers with up to 3 decimal places.

Conceptual variation; different ways to ask children to solve 391-186				
		Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference		Missing digit calculations:
186	?		What is 186 less than 391 ?	05

Calculation Policy: Multiplication

	Objectiv e	Concrete	Pictorial	Abstract
			Children to represent the practical resources in a picture and use a bar model.	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$
			Represent this pictorially alongside a number line:	

Calculation Policy: Division

$\stackrel{ \pm}{\text { m }}$		Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{gathered} \text { E.g. } 15 \div 3=5 \\ 5 \times 3=15 \\ 15 \div 5=3 \\ 3 \times 5=15 \end{gathered}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$
$\stackrel{®}{\succ}$		Use place value counters to divide using the short division method alongside. $96 \div 3$	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder:

$\begin{aligned} & 0 \\ & \vdots \\ & \overline{0} \\ & \stackrel{0}{0} \end{aligned}$		$364 \div 3=\quad{ }_{3} \stackrel{121 \mathrm{rem} 1}{364}_{1}^{1}$			Children can draw place value counters to represent division.	Move onto divisions with a remainder. Once children understand remainders, begin to express as a fraction or decimal according to the context.
		$\begin{aligned} & \text { @ } \\ & \text { @ } \end{aligned}$	-0			

